- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ginsburg, Adam (2)
-
Ott, Juergen (2)
-
Butterfield, Natalie O (1)
-
Gramze, Savannah R (1)
-
Gramze, Savannah R. (1)
-
Klessen, Ralf S (1)
-
Meier, David S (1)
-
Meier, David S. (1)
-
Nilipour, Andy (1)
-
Shirley, Yancy (1)
-
Sormani, Mattia C (1)
-
Sormani, Mattia C. (1)
-
Svoboda, Brian (1)
-
Svoboda, Brian E. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Central Molecular Zone (CMZ) of the Milky Way is fed by gas inflows from the Galactic disk along almost radial trajectories aligned with the major axis of the Galactic bar. However, despite being fundamental to all processes in the nucleus of the Galaxy, these inflows have been studied significantly less than the CMZ itself. We present observations of various molecular lines between 215 and 230 GHz for 20 clouds with ∣ℓ∣ < 10°, which are candidates for clouds in the Galactic bar due to their warm temperatures and broad lines relative to typical Galactic disk clouds, using the Atacama Large Millimeter/submillimeter Array Atacama Compact Array. We measure gas temperatures, shocks, star formation rates, turbulent Mach numbers, and masses for these clouds. Although some clouds may be in the Galactic disk despite their atypical properties, nine clouds are likely associated with regions in the Galactic bar, and in these clouds, turbulent pressure is suppressing star formation. In clouds with no detected star formation, turbulence is the dominant heating mechanism, whereas photoelectric processes heat the star-forming clouds. We find that the ammonia (NH3) and formaldehyde (H2CO) temperatures probe different gas components, and in general, each transition appears to trace different molecular gas phases within the clouds. We also measure the CO-to-H2X-factor in the bar to be an order of magnitude lower than the typical Galactic value. These observations provide evidence that molecular clouds achieve CMZ-like properties before reaching the CMZ.more » « less
-
Gramze, Savannah R.; Ginsburg, Adam; Meier, David S.; Ott, Juergen; Shirley, Yancy; Sormani, Mattia C.; Svoboda, Brian E. (, The Astrophysical Journal)Abstract The Milky Way is a barred spiral galaxy withbar lanesthat bring gas toward the Galactic center. Gas flowing along these bar lanes often overshoots, and instead of accreting onto the Central Molecular Zone (CMZ), it collides with the bar lane on the opposite side of the Galaxy. We observed G5, a cloud that we believe is the site of one such collision, near the Galactic center at (ℓ,b) = ( +5.4, −0.4) with the Atacama Large Millimeter/submillimeter Array/Atacama Compact Array. We took measurements of the spectral lines12COJ= 2 → 1,13COJ= 2 → 1, C18OJ= 2 → 1, H2COJ= 303→ 202, H2COJ= 322→ 221, CH3OHJ= 422→ 312, OCSJ= 18 → 17, and SiOJ= 5 → 4. We observed a velocity bridge between two clouds at ∼50 and ∼150 km s−1in our position–velocity diagram, which is direct evidence of a cloud–cloud collision. We measured an average gas temperature of ∼60 K in G5 using H2CO integrated-intensity line ratios. We observed that the12C/13C ratio in G5 is consistent with optically thin, or at most marginally optically thick12CO. We measured for the local XCO, 10–20× less than the average Galactic value. G5 is strong direct observational evidence of gas overshooting the CMZ and colliding with a bar lane on the opposite side of the Galactic center.more » « less
An official website of the United States government
